

Faculty of: Sciences and Life Sciences Course: Bachelor of Science (Chemistry) Semester: I

Subject Code: CHM201-1C

Subject Name: Inorganic and Physical Chemistry-I

	Teaching hours/ Week			Evaluation Scheme/ Semester													
Sr No	Categor y	Subjec t Code	Subject Name	T h	Tu		t	Credi t Points	Continuous and		End Semester Exams		Tutorial / Internal Assessment		End Semester		Total
									Ma rks	Marks	Mar ks	Duratio n	Mark s	Duratio n	Mark s	Duratio n	
1	MAJOR	CHM2 01-1C	Inorganic and Physical Chemistry-I	3	-	2	5	4	10 10 05	Assignment Quiz Attendance	50	2	25	1	-	-	100

AIM :

- Aware students of the history of chemistry and its scope.
- Acquaint the basic concept of Chemistry as a subject.
- Basic concepts related to Inorganic and physical chemistry.
- Learn laboratory skills for handling glassware and chemicals for safety purposes.
- To teach analysis of unknown inorganic compound

COURSE CONTENTS

Course Outline for Theory

UNIT	COURSE CONTENT	TEACHING HOURS
Ι	 A) Wave Mechanics Matter waves The wave nature of the electron wave equation. De-Broglie equation and uncertainty principle. Fundamental postulates of wave mechanics. Introduction of Schrodinger's wave equation and quantum numbers. Examples based on De-Broglie equation and uncertainty principle B) V.B. & M.O. Theory Valence bond theory of chemical bonding, Explanation of formation of covalent bond by Lewis theory. Limitations of Lewis theory, V.B.T. for formation of covalent bond. Overlapping of s-s, s-p & p-p orbital. Explanation of H₂, N₂, O₂, F₂, NH₃, H₂O & HF molecules by V.B.T. Limitations of V.B.T, Formation of bonding and anti-bonding molecular orbitals and bond order. Order of energy for molecular orbitals. Molecular orbital diagram of homonuclear diatomic molecules Molecular orbital diagram of ions such as H₂, H₂⁺, He₂, He₂⁺ 	HOURS
II	Chemical Thermodynamics	15

	• Definition of thermodynamic terms: System, surrounding etc.					
	• Types of systems.					
	 Intensive & extensive properties, state of path functions, thermodynamic process, concept of heat & work. 					
	• First law of Thermodynamics.:- Statement, definition of internal energy & enthalpy, heat capacity, heat capacities of constant volume & pressure & their relationship.					
	• Joule's law calculation of W, q, dU and dH for the expansions of ideal gases under isothermal & adiabatic conditions for reversible process.					
	• Limitations of first law of Thermodynamics.					
	• Second law of Thermodynamics.					
	• Different statements of Second law of Thermodynamics.					
	• Definition of entropy and free energy, Significance of entropy in a reaction.					
	• Carnot theorem, Carnot cycle and its efficiency.					
	• Thermodynamic scale of temperature.					
	• Numerical based on first and second law of thermodynamics.					
	Metal & Metallurgy					
	Introduction, occurrence, definition of Metallurgy					
III						
	General method involved in extraction of metals					
	• Extraction processes, chemical properties, important compounds an uses of Cr, Ni and Zn					

Course Outline for Practical

SR. NO	COURSE CONTENT						
	Demonstrative Practicals						
	Introduction to the laboratory, safety rules during practicals, and knowledge about						
1	different signs and symbols regarding hazardous materials.						
	Calibration and use of apparatus/common glassware (burette and pipette), and their						
	uses. Preparations of Standard solutions.						
	Qualitative Analysis of Inorganic Salts						
2	Inorganic salts containing two radicals						
2	Anion: Cl ⁻ , Br ⁻ , I ⁻ , NO ₂ ⁻ , SO ₄ ⁻² , CO ₃ ⁻² , CrO4 ⁻² , Cr ₂ O ₇ ⁻²						
	Cation: Group I to VI positive ions						
	Total Hours = 30						

TEACHING METHODOLOGY:

- Conventional method (classroom blackboard teaching)
- ICT Techniques
- Teaching through the classroom, laboratory work
- Variety of learning styles and tools (PowerPoint presentations, audio-visual resources, e-resources, seminars, workshops, models)
- Teaching through laboratory work

LEARNING OUTCOME:

• Expand the Chemistry knowledge using various fundamental aspects of different branches of chemical sciences.

- Procure knowledge of wave mechanics with different theories
- Obtain significant knowledge about metallurgy
- Understanding the importance of laboratory work and laboratory safety
- Acquire knowledge about types of glassware and their calibration
- Develop skills in the preparation of chemicals of various concentration
- Learn to analyze the positive and negative ions from unknown inorganic compounds

ARRANGEMENT OF LECTURE DURATION AND PRACTICAL SESSION AS PER DEFINED CREDIT NUMBERS

Units		Duration Hrs.)	Cre	ation of edits mbers)	Total Lecture Duration	Credit Calculation
	Theory	Practical	Theory	Practical	Theory+ Practical	Theory+ Practical
Unit – 1	15					
Unit – 2	15	30	3	1	45+30	4
Unit – 3	15					
TOTAL	45	30	3	1	75	4

EVALUATION

Theory Marks	Practical Marks	Total Marks
75	25	100

REFERENCE BOOKS

- 1 Basic Inorganic Chemistry
- 2 Principles of Inorganic Chemistry
- 3 Principles of Physical Chemistry
- 4 A Textbook of Physical Chemistry
- 5 Vogel's Qualitative Inorganic Analysis
- 6 Practical Chemistry

FA. Cotton and G. Wilkinson.

B.R. Puri, L.R. Sharma & K.C Kalia,

Puri, Sharma, Pathania.

B.K. Sharma.

G. Svehla, B. Sivasankar

Pandey, O. P., Bajpai, D. N., Giri, S.